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Abstract

An approach to the analysis of data that contains (multiple) structural changes in a linear
regression setup is presented. Various strategies which have been suggested in the literature for
testing against structural changes as well as a dynamic programming algorithm for the dating
of the breakpoints are implemented in the R statistical software package. Using historical data
on Nile river discharges, road casualties in Great Britain and oil prices in Germany, it is shown
that statistically detected changes in the mean of a time series as well as in the coe6cients of a
linear regression coincide with identi7able historical, political or economic events which might
have caused these breaks.
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1. Introduction

Most classical tests against changes in the coe6cients of a linear regression model
assume that there is just a single change under the alternative or that the timing and
the type of change are known. More recently, there has been a surge of interest in
recovering the date of a shift if one has occurred or in methods which allow for several
shifts at once, see Bai (1997), Hawkins (2001), Sullivan (2002) and Bai and Perron
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(2003) among many others. The present paper summarizes this more recent work and
shows how to apply these methods using the R system for statistical computing, thereby
a bit rebalancing this literature, which is rather long on theoretical insights but often
rather short on information on how these theories can be applied.

This is what we do below. To illustrate our software, we use three data sets. The
7rst one is the Nile data from Cobb (1978) and later analyzed by D+umbgen (1991)
and Balke (1993) which exhibits a level shift associated with the opening of the (7rst)
Aswan dam at the end of the 19th century. The second data set is a time series of
British road casualties analyzed by Harvey and Durbin (1986) which exhibits two
breaks, one associated with increasing petrol prices in the wake of the 7rst oil crisis,
the second with the introduction of compulsory wearing of seatbelts in the early 1980s.
Our third example—an index of the oil prices in Germany—was chosen in order to
have a series with more than two breaks, in this case associated with events such as
the 7rst oil crisis, the Iranian revolution, and the virtual breakup of OPEC in 1985.

2. Model and methods

2.1. The model

We consider the standard linear regression model

yi = x�i �i + ui (i = 1; : : : ; n); (1)

where at time i, yi is the observation of the dependent variable, xi is a k× 1 vector of
regressors, with the 7rst component usually equal to unity, and �i is the k × 1 vector
of regression coe6cients, which may vary over time. The interpretation of i as time is
the most common but not the only one: e.g., in changepoint analysis the observations
are often ordered by the size of a variable not included in xi.

This paper is concerned with testing the hypothesis that the regression coe6cients
remain constant

H0: �i = �0 (i = 1; : : : ; n); (2)

against the alternative that at least one coe6cient varies over time. In many applica-
tions, it is reasonable to assume that there are m breakpoints, where the coe6cients
shift from one stable regression relationship to a diLerent one. Thus, there are m + 1
segments in which the regression coe6cients are constant, and model (1) can be re-
written as

yi = x�i �j + ui (i = ij−1 + 1; : : : ; ij ; j = 1; : : : ; m+ 1); (3)

where j is the segment index, Im;n = {i1; : : : ; im} denotes the set of the breakpoints
(Im;n is also called m-partition), and by convention i0 = 0 and im+1 = n.

In practice, the breakpoints are rarely given exogenously but are unknown and have
to be estimated from the data. This is what we do below. Our methodology is valid
under fairly general assumptions on regressors and disturbances, see e.g. Kr+amer et al.
(1988) or Bai (1997). Basically, they have to be such that a functional central limit
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theorem holds. This is for example satis7ed if {ui} is a martingale diLerence with ui
independent of xi and the regressors {xi} are (almost) stationary, which also allows for
lagged dependent variables among the regressors. For the dating procedures discussed
below weaker assumptions will su6ce, in particular trending regressors are permitted,
see Bai and Perron (1998) for further discussion.

2.2. The tests

Two frameworks for testing of structural change can be distinguished: (i) F statis-
tics (Andrews, 1993; Andrews and Ploberger, 1994) that are designed for a speci7c
alternative and (ii) generalized Nuctuation tests (Kuan and Hornik, 1995) that do not
assume a particular pattern of deviation from the null hypothesis.
F statistics test against a single-shift alternative of unknown timing, i.e., model (3)

with m=1. Tests against this alternative are usually based on a sequence of F statistics
for a change at time i: the OLS residuals û(i) from a segmented regression, i.e., one
regression for each subsample, with breakpoint i, are compared to the residuals û from
the unsegmented model via

Fi =
û �û− û(i)�û(i)
û(i)�û(i)=(n− 2k)

: (4)

These F statistics are then computed for i = nh; : : : ; n − nh (nh¿ k) and H0 is re-
jected if their supremum—or average or exp functional, see Andrews and Ploberger
(1994)—is too large. Hansen (1997) gives an algorithm for computing approximate
asymptotic p values of these tests, which is implemented in the software package used
below.

In applications, nh = �nh� will be a trimming parameter that can be chosen by the
practitioner. In our examples below we use h= 0:1 or h= 0:15.

Bai and Perron (1998, 2003) extend this approach to F tests for 0 vs. ‘ breaks and
‘ vs. ‘ + 1 breaks, respectively, with arbitrary but 7xed ‘.

The generalized Nuctuation test framework “includes formal signi7cance tests but its
philosophy is basically that of data analysis as expounded by Tukey (1962). Essen-
tially, the techniques are designed to bring out departures from constancy in a graphic
way instead of parametrizing particular types of departure in advance and then devel-
oping formal signi7cance tests intended to have high power against these particular
alternatives.” (Brown et al., 1975, pp. 149–150). More precisely, model (1) is 7tted
to the data and an empirical process is derived that captures the Nuctuation either in
residuals or in parameter estimates. Under the null hypothesis these are governed by
functional central limit theorems (see Kuan and Hornik, 1995) and, therefore, bound-
aries can be found that are crossed by the corresponding limiting processes with 7xed
probability � under the null hypothesis. Under the alternative, the Nuctuation in the
process is in general increased. Also, the trajectory of the process often sheds light
on the type of deviation from the null hypothesis such as the dating of the structural
breaks.
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As an example, consider the OLS-based CUSUM test introduced by Ploberger and
Kr+amer (1992) which is based on cumulated sums of standard OLS residuals

W 0
n (t) =

1
�̂
√
n

�nt�∑

i=1

û i (06 t6 1): (5)

The limiting process for W 0
n (t) is the standard Brownian bridge W 0(t)=W (t)− tW (1),

where W (·) denotes standard Brownian motion; under a single-shift alternative the
process should have a peak around the breakpoint. Another test which is used below is
the recursive estimates (RE) test of Ploberger et al. (1989), which compares recursive
estimates of the regression coe6cients with the full sample estimates. If the regression
includes only an intercept, i.e., xi = 1, it is equivalent to the OLS-based CUSUM test
(5). Additional tests from this framework are the classical CUSUM test of Brown
et al. (1975) based on recursive residuals, the MOSUM tests (Chu et al., 1995a) and
the moving estimates (ME) test (Chu et al., 1995b).

2.3. Dating structural changes

Given an m-partition i1; : : : ; im the least-squares estimates for the �j can easily be
obtained. The resulting minimal residual sum of squares is given by

RSS(i1; : : : ; im) =
m+1∑

j=1

rss(ij−1 + 1; ij); (6)

where rss(ij−1 + 1; ij) is the usual minimal residual sum of squares in the jth seg-
ment. The problem of dating structural changes is to 7nd the breakpoints –̂1; : : : ; –̂m that
minimize the objective function

(–̂1; : : : ; –̂m) = argmin
(i1 ;:::; im)

RSS(i1; : : : ; im) (7)

over all partitions (i1; : : : ; im) with ij − ij−1¿ nh¿ k.
Obtaining the global minimizers in (7) by an extensive grid search would be of

order O(nm) and computationally burdensome for m¿ 2 (and any reasonable sample
size n). Therefore, many hierarchical algorithms have been proposed that do recursive
partitioning or joining of subsamples, see e.g. Bai (1997) or Sullivan (2002), but these
will not necessarily 7nd the global minimizers. These can be found much easier by
a dynamic programming approach that is of order O(n2) for any number of changes
m. Hawkins (2001) discusses this for changepoint problems in a maximum likelihood
framework which could also be extended to estimation of the parameters of a piecewise
regression as suggested by Hawkins (1976). Bai and Perron (2003) present a version
of that dynamic programming algorithm for pure and partial structural change models
in an OLS regression context, which we adopt here. The basic idea is that of Bellman’s
principle: the optimal segmentation satis7es the recursion

RSS(Im;n) = min
mnh6i6n−nh

[RSS(Im−1; i) + rss(i + 1; n)]: (8)
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Therefore, it su6ces to know for each point i the “optimal previous partner” if i was
the last breakpoint in an m-partition. This can be derived from a triangular matrix of
rss(i; j) with j− i¿ nh, the computation of which is again made easier by the recursive
relation rss(i; j) = rss(i; j − 1) + r(i; j)2, where r(i; j) is the recursive residual at time
j of a sample starting at i (Brown et al., 1975). For more details on this dynamic
programming algorithm see Bai and Perron (2003).

3. Software

We have incorporated all tests described above in the package strucchange in the
R system 1 for statistical computing, the GNU implementation of the S language. The
package can be downloaded from the Comprehensive R Archive Network (CRAN)
at http://cran.R-project.org/ and is described in detail in Zeileis et al. (2002).
Here, we show how to use this package to test against and to date structural changes
with unknown timing and multiplicity.

For instance, the empirical f luctuation processes from the generalized Nuctuation test
framework can be obtained via the function

efp(formula, data, type, ...),

where formula de7nes regression model (1) to be tested, e.g., y ˜ x. This is a
version of the notation introduced by Wilkinsons and Rogers (1973), as adapted for S
(Chambers and Hastie, 1992). The argument data is a data frame that might contain the
variables y and x and the argument type speci7es the type of Nuctuation process that
should be 7tted, e.g., “OLS-CUSUM” to 7t the OLS-based CUSUM process from (1). The
empirical Nuctuation process object returned by efp can then be plotted together with
its (asymptotic) boundaries using the function plot and the corresponding signi7cance
test can be carried out with the function sctest (structural change test).

Similarly, a sequence of F statistics can be computed with

Fstats(formula, data, cov.type, from=0.15, ...),

where from speci7es the trimming parameter h. The cov.type argument allows to
calculate the F statistics based on heteroskedasticity robust covariance matrix estimates
(the default is spherical errors). The returned object can again be plotted together with
its (asymptotic) boundaries, and formal signi7cance tests for the supF; aveF and expF
tests can be performed.

If there is evidence for structural changes in the regression relationship these can be
dated with the function

breakpoints(formula, data, breaks, h=0.15, ...),

1 http://www.R-project.org/.

http://cran.R-project.org/
http://www.R-project.org/
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which implements the dynamic programming algorithm described above. In particular,
it computes the triangular rss(i; j) matrix. The parameter breaks is the number of
breakpoints m, the default being the largest number allowed by the trimming parameter
h. From the object returned by this function any other number of breakpoints m can
be extracted (as it contains the triangular rss(i; j) matrix) by another application of
the function breakpoints to this object. This will be described in more detail in the
applications below.

More detailed information about the functions and their arguments can be found on
the respective help pages in the documentation of the strucchange package and in
Zeileis et al. (2002). Furthermore, the help page for the function breakpoints shows
how to reproduce the analysis for the Nile and the seatbelt data from the next section.

4. Applications

4.1. The Nile data

First, we apply the above methods to a time series of the annual Now of the river
Nile at Aswan from 1871 to 1970 (Cobb, 1978; D+umbgen, 1991; Balke, 1993). It
measures annual discharge at Aswan in 108 m3 and is depicted in Fig. 1.

We test whether the mean of the annual Now changes over time, i.e., we 7t a constant
to the data (inclusion of the lagged dependent variable does not lead to diLerent results
and was not found to have signi7cant inNuence in the segmented model). In the S
language this is written as Nile ˜ 1, where Nile is a time series object containing
the data. To check for structural changes in this model, we 7rst use the OLS-based
CUSUM process from (5). The code below shows how to 7t this Nuctuation process
and to produce the plot shown in Fig. 2; it gives the process together with its boundaries
at an (asymptotic) 5% signi7cance level.

R¿ocus.nile ¡- efp(Nile ˜ 1, type = “OLS- CUSUM”)
R¿plot(ocus.nile).
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Fig. 1. The Nile data.
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OLS-based CUSUM test
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Fig. 2. OLS-based CUSUM process for the Nile data.
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Fig. 3. F statistics for the Nile data.

The process has a peak around 1900 which exceeds the boundaries and hence indi-
cates a clear structural shift at that time. The obvious reason is the Aswan dam that
was built in 1898.

The same conclusion emerges from tests based on F statistics, as shown in Fig. 3.
The code below computes the F statistics and sets up a plot of the resulting process
together with the boundaries corresponding to a supF test at the 5% signi7cance level.

R¿ fs.nile ¡- Fstats(Nile ˜ 1)
R¿ plot(fs.nile).

From this sequence of F statistics the optimal breakpoint for a two-segment partition
can be obtained as it is equivalent to maximizing the F statistic (4) or to minimizing
the residual sum of squares (7). This breakpoint estimate can easily be obtained by
breakpoints(fs.nile). Although a two-segment model seems quite intuitive for
these data we also compare it to models with additional breakpoints. The following
command computes arbitrary m-segment models based on the rss(i; j) triangular matrix
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Fig. 4. BIC for models with m breakpoints.

(with the default trimming of h= 0:15):

R¿bp.nile¡- breakpoints(Nile ˜ 1)

A summary of this object reports the breakpoints for (m + 1)-segment models with
m= 0; : : : ; 5 (the maximum possible with h= 0:15) as well as the associated RSS and
BIC. Such information criteria are often used for model selection, which in this case
means selection of the number m of breakpoints. Bai and Perron (2003) argue that the
AIC usually overestimates the number of breaks but the BIC is a suitable selection
procedure in many situations. For the Nile data, Fig. 4 shows that the BIC selects a
model with m = 1 breakpoint, which con7rms the results of the previous tests. The
breakpoint for this model is observation 28—or equivalently the year 1898—and can
be extracted by

R¿bp1¡- breakpoints(bp.nile, breaks = 1).

To summarize our results we 7t two linear models to the data. The 7rst model fm0
is the model under the null hypothesis without any breaks and fm1 is the estimated
two-segment model. The factor nile.fac is a suitable coding of the partition implied
by the estimated breakpoint. It can be generated by the function breakfactor which
draws on results of the breakpoints function. In the S language the function lm 7ts
linear models whose coe6cients can be extracted via coef.

R¿fm0.nile¡- lm(Nile ˜ 1)
R¿coef(fm0.nile)

(Intercept)
919.35

R¿nile.fac¡- breakfactor(bp1)
R¿fm1.nile¡- lm(Nile ˜ nile.fac - 1)
R¿coef(fm1.nile)
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Fig. 5. Fitted models for the Nile data.
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Fig. 6. The seatbelt data.

nile.facsegment1 nile.facsegment2
1097.7500 849.9722

The results can also be visualized as in Fig. 5, which shows the 7tted model for
m= 0; 1.

4.2. The seatbelt data

This section analyzes a monthly time series (from 1969(1) to 1984(12)) of the
number of car drivers in Great Britain killed or seriously injured in tra6c accidents
(Harvey and Durbin, 1986). An appropriate model for analyzing this time series in a
least-squares framework is to take the logarithm of the data and regress it on its lagged
values at lag 1 and 12. This corresponds to a multiplicative SARIMA(1; 0; 0)(1; 0; 0)12

model 7tted by OLS. Another possibility would be to take 7rst diLerences instead of
logs which leads to very similar results, with slightly inferior 7ts.

The log-transformed series is depicted in Fig. 6.
To test for structural changes, we use the RE test and F statistics with a trimming

parameter of h = 0:1. Both processes are 7tted and plotted in the code given below
and the results are shown in Fig. 7.
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R¿re.seat¡- efp(y ˜ ylag1+ylag12, data = seatbelt, type = “RE”)
R¿plot(re.seat)
R¿fs.seat¡- Fstats(y ˜ ylag1+ylag12, data = seatbelt, from = 0.1)
R¿plot(fs.seat, main = “supF test”)

Both processes show signi7cant departures from the null at a (asymptotic) 5% level,
indicating at least one break in the data. But both processes have two clear peaks, the
7rst in 1973(10) and the second in 1982(12) and 1983(1) respectively, and favour a
model with m= 2 breaks. To date the structural changes in this regression model we
again estimate the breakpoints with a trimming parameter of h= 0:1 and a maximum
of m= 5 breaks.

R¿bp.seat¡- breakpoints(y ˜ ylag1+ylag12, data=seatbelt, h=0.1,
+ breaks = 5).

The BIC as shown in Fig. 8 for the models with m = 0; : : : ; 5 breakpoints would
choose a model without any breaks, even though all the structural change tests above
indicate at least one break. This might be caused by the fact that lagged regressors are
included in which case the BIC might perform badly as pointed out by Bai and Perron
(2003).

Due to the two peaks in the recursive estimates process and the sequence of F
statistics, respectively, we decide in favour of a model with two breakpoints:

R¿bp2¡- breakpoints(bp.seat, breaks = 2).

The optimal breakpoints are then 1973(10)—associated with petrol rationing and the
introduction of lower speed limits during the 7rst oil crisis, see also the time series of
oil prices in the following subsection—and 1983(1)— a level shift associated with the

Fluctuation test (recursive estimates test)
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Fig. 7. Structural change tests for the seatbelt data.
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Fig. 8. BIC for models with m breakpoints.
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Fig. 9. Fitted model for the seatbelt data.

seat belt law introduced in the UK on 1983-01-31 (see Harvey and Durbin, 1986, for
further details).

The 7tted dependent variable with the two breaks can be seen in Fig. 9.

4.3. The oil price data

This section considers a quarterly index of import prices of petroleum products—
hereafter referred to as the oil price data—from 1960(1) to 1994(4) (base year: 1991).
The data was obtained from the Statistisches Bundesamt Deutschland (Federal Statis-
tical O6ce, Germany) and is given in Fig. 10 (in logs).

Since there are obvious shifts in the mean, all structural change tests are highly sig-
ni7cant. We, therefore, omit all details and directly proceed to estimate the breakpoints
(with the default trimming of h= 0:15).

R¿bp.oil¡- breakpoints(log(OilPrice) ˜ 1).

Again, a summary of this object would give information about the estimated break-
points and the associated RSS and BIC of partitions with m= 0; : : : ; 5 breakpoints. For
illustration, Fig. 11 depicts the BIC, which is almost identical for three and four breaks.
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Fig. 10. The oil price data.
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Fig. 11. BIC for models with m breakpoints.

Hence, we 7rst extract the segmentation with three breaks

R¿bp3¡- breakpoints(bp.oil, breaks = 3)

and then we use the OLS-based CUSUM for checking for additional breaks in the
mean.

R¿ ocus.oil ¡- efp(log(OilPrice) ˜ breakfactor(bp3), type=
“OLS- CUSUM”)

R¿ plot(ocus.oil).

The CUSUM process in Fig. 12 exhibits various peaks, the highest of which is in
1964, but none of these seems to be too extreme. So we stick to the model with three
breakpoints which are 1973(3), 1979(1) and 1985(4). The 7tted model is shown in
Fig. 13.

The period 1973(3), for quarterly data, is essentially the same breakpoint as 1973(10)
for the monthly seatbelt data, which corresponds to the Arab oil embargo after the
Yom Kippur war. 1979(1) marks the start of the Iranian revolution followed by the
war between Iran and Iraq. The break in 1985(1) is, in hindsight, a joint product
of various minor events such as a worldwide slowdown of demand, the entering of
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OLS-based CUSUM test
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Fig. 12. OLS-based CUSUM process for the oil price data.
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Fig. 13. Fitted model for the oil price data.

Great Britain, Norway and Mexico as major suppliers in international oil markets, and
internal quarrels in the OPEC cartel, which led Saudi Arabia to increase its production
and to abandon its role as the “residual supplier” which had until then softened all
shocks in demand.

5. Outlook and summary

We have shown how recent methodological advances in testing against and dating
multiple structural changes can be applied to “real” data. These methods are imple-
mented in the R package strucchange: it allows for visualization and graphical analy-
sis of empirical Nuctuation processes and sequences of F statistics which often convey
information about the presence and location of breakpoints in the data. In addition,
it provides formal signi7cance tests and a dynamic programming algorithm for com-
puting breakpoint estimates that are global minimizers of the residual sum of squares.
Although our empirical results are rather encouraging, they should not conceal that the
di6culties with BIC-based model selection for one of our data sets suggest that the
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problem of determining the number of breakpoints in changepoint analysis deserves
further study. This is currently under investigation.
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